Hi,
One idea I had was that autoencoders would become
kind of invisible, and work under the hood to compress
Prolog facts. Take these facts:
% standard _, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
data(seg7, [0,0,0,0,0,0,0], [0,0,0,0,0,0,0]).
data(seg7, [1,1,1,1,1,1,0], [1,1,1,1,1,1,0]).
data(seg7, [0,1,1,0,0,0,0], [0,1,1,0,0,0,0]).
data(seg7, [1,1,0,1,1,0,1], [1,1,0,1,1,0,1]).
data(seg7, [1,1,1,1,0,0,1], [1,1,1,1,0,0,1]).
data(seg7, [0,1,1,0,0,1,1], [0,1,1,0,0,1,1]).
data(seg7, [1,0,1,1,0,1,1], [1,0,1,1,0,1,1]).
data(seg7, [1,0,1,1,1,1,1], [1,0,1,1,1,1,1]).
data(seg7, [1,1,1,0,0,0,0], [1,1,1,0,0,0,0]).
data(seg7, [1,1,1,1,1,1,1], [1,1,1,1,1,1,1]).
data(seg7, [1,1,1,1,0,1,1], [1,1,1,1,0,1,1]).
% alternatives 9, 7, 6, 1
data(seg7, [1,1,1,0,0,1,1], [1,1,1,1,0,1,1]).
data(seg7, [1,1,1,0,0,1,0], [1,1,1,0,0,0,0]).
data(seg7, [0,0,1,1,1,1,1], [1,0,1,1,1,1,1]).
data(seg7, [0,0,0,0,1,1,0], [0,1,1,0,0,0,0]).
https://en.wikipedia.org/wiki/Seven-segment_display
Or more visually, 9 7 6 1 have variants trained:
The auto encoder would create a latent space, an encoder,
and a decoder. And we could basically query ?- data(seg7, X, Y)
with X
input, and Y
output, 9 7 6 1 were corrected:
The autoencoder might also tolerate deviations in the input
that are not in the training data, giving it some inferential
capability. And then choose an output again not in the training
data, giving it some generative capabilities.
Bye