Prolog totally missed the AI Boom

Hi,

One idea I had was that autoencoders would become
kind of invisible, and work under the hood to compress
Prolog facts. Take these facts:

% standard _, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
data(seg7, [0,0,0,0,0,0,0], [0,0,0,0,0,0,0]).
data(seg7, [1,1,1,1,1,1,0], [1,1,1,1,1,1,0]).
data(seg7, [0,1,1,0,0,0,0], [0,1,1,0,0,0,0]).
data(seg7, [1,1,0,1,1,0,1], [1,1,0,1,1,0,1]).
data(seg7, [1,1,1,1,0,0,1], [1,1,1,1,0,0,1]).
data(seg7, [0,1,1,0,0,1,1], [0,1,1,0,0,1,1]).
data(seg7, [1,0,1,1,0,1,1], [1,0,1,1,0,1,1]).
data(seg7, [1,0,1,1,1,1,1], [1,0,1,1,1,1,1]).
data(seg7, [1,1,1,0,0,0,0], [1,1,1,0,0,0,0]).
data(seg7, [1,1,1,1,1,1,1], [1,1,1,1,1,1,1]).
data(seg7, [1,1,1,1,0,1,1], [1,1,1,1,0,1,1]).
% alternatives 9, 7, 6, 1
data(seg7, [1,1,1,0,0,1,1], [1,1,1,1,0,1,1]).
data(seg7, [1,1,1,0,0,1,0], [1,1,1,0,0,0,0]).
data(seg7, [0,0,1,1,1,1,1], [1,0,1,1,1,1,1]).
data(seg7, [0,0,0,0,1,1,0], [0,1,1,0,0,0,0]).

https://en.wikipedia.org/wiki/Seven-segment_display

Or more visually, 9 7 6 1 have variants trained:

dggikcadjjecddab

The auto encoder would create a latent space, an encoder,
and a decoder. And we could basically query ?- data(seg7, X, Y)
with X input, and Y output, 9 7 6 1 were corrected:

gllnchcmjnlmnagn

The autoencoder might also tolerate deviations in the input
that are not in the training data, giving it some inferential
capability. And then choose an output again not in the training

data, giving it some generative capabilities.

Bye